Конденсационные методы получения дисперсных систем. На тему: методы получения и очистки дисперсных систем химический факультет - презентация Методы получения дисперсных систем и их очистка

а) диспергирование, или измельчение (ступка, коллоидная мельница, электрораспыление в дуге, УЗ).

б) конденсация: физическая (облака) и химическая.

в) пептизация

Лиофильные эмульсии получаются самопроизвольно и устойчивы, а лиофобные неустойчивы и для их образования требуется затрата работы. Они получаются при механическом, акустическом или электрическом диспергировании. Например, дуговой метод: в воде возбуждается электрический разряд между двумя проволоками из Ag, Au или Fe. Пары металла, испарившиеся в зоне дуги, конденсируются в микрокристаллы, которые сорбируют на поверхности ионы ОН - , и раствор стабилизируется.

Очистка от примесей: диализ - сосуд разделен полупроницаемой перегородкой, в одном коллоидный раствор, в другом растворитель. Смена растворителя. Электродиализ - диализ в электрическом поле.

ПОРИСТЫЕ ТЕЛА

Это твердые тела, внутри которых имеются поры, которые могут быть заполнены газом или жидкостью. Имеют твердую дисперсионную среду и жидкую или газообразную дисперсную фазу ("негатив" порошков или суспензий). В микропористых телах размер пор соизмерим с размерами молекул (радиусы от 0.5 до 1.5 нм). Пористыми телами являются торф, древесина, кожа, бумага, ткани, почва и др. На практике в качестве адсорбентов, предназначенных для извлечения, разделения и очистки веществ применяют специально синтезированные твердые тела, имеющие большую удельную поверхность, прочность, избирательность. Широко распространены активированные угли, силикагели, алюмогели и цеолиты. Цеолиты - алюмосиликаты, имеющие правильную кристаллическую структуру. Каркас цеолита состоит из тетраэдрических элементов 4- и 5- , соединенных общими атомами О. Избыточный отрицательный заряд каркаса нейтрализуется зарядом катионов щелочных и щелочноземельных металлов, находящихся в порах. Размер полостей цеолитов 0.4 - 1.1 нм. На цеолитах могут адсорбироваться молекулы меньшего размера, чем поры, отсюда второе название цеолитов - "молекулярные сита". Они эффективно поглощают воду и поэтому широко применяются для осушки газовых и жидких сред. При нагревании вода из них испаряется.

Одной из основных характеристик пористых тел является пористость - отношение объема пор к общему объему тела. Адсорбция на мелкопористых телах возможна при смачивании поверхности жидкостью. Сначала происходит полимолекулярная адсорбция, а далее капиллярная конденсация.

ГЕЛИ

Это однородные дисперсные системы, в которых коллоидные частицы связаны между собой в структуру, дисперсионная среда заполняет промежутки. Обладают некоторыми свойствами твердых тел: сохранением формы, пластичностью, определенной прочностью. Примеры: силикагель, алюмогель, гипс. Богатые жидкостью называются лиогелями, высушенные - ксерогелями. Гели, образованные из растворов ВМС, называют студнями.

Различаются эластичные и неэластичные гели. Неэластичные впитывают жидкость, почти не меняя объем. Потеряв часть жидкости, они становятся хрупкими. Эластичные могут впитывать лишь некоторые сходные жидкости и способны после деформации восстанавливать свою форму. Поглощение жидкости приводит к набуханию.

Получение гелей:

1. Химическая реакция Na 2 SiO 3 +2HCl=H 2 SiO 3 +2NaCl

2. Набухание ксерогеля. В некоторых случаях образовавшийся каркас непрочен и при встряхивании разрушается, образуя раствор, который при стоянии может опять застыть (тиксотропия ).

ЭМУЛЬСИИ

Дисперсная фаза и дисперсионная среда в жидком состоянии. Размер капелек от 1 до 50 микрон. Обе жидкости взаимно нерастворимы. Эмульсии широко распространены в природе и технике. Примеры: масло сливочное, молоко, сливки, маргарин, яичный желток, латекс.

Если одна жидкость полярная, а другая нет, то различают эмульсию “масло в воде” (пример - сливки), или “вода в масле” (пример - сливочное масло). Большинство эмульсий неустойчиво и при хранении происходит коалесценция (слияние) капелек. Стабилизаторы (эмульгаторы) адсорбируются на поверхности капелек; механизм стабилизации: понижение поверхностного натяжения, сообщение поверхности капелек электрического заряда, образование на поверхности пленки с механической прочностью. Эмульгаторы бывают гидрофобные (сажа, сульфиды, органические вещества) и гидрофильные (глина, мел, гипс), для стабилизации двух типов эмульсий. Сильным эмульгатором являются ПАВ, в зависимости от состава для обоих типов эмульсий.

Эмульсии часто образуются в экстракционных аппаратах, в различных химических реакциях.

2 способа получения эмульсий: 1) дробление капелек при сильном перемешивании в присутствии эмульгатора. Сильное понижение поверхностного натяжения при добавлении ПАВ позволяет получить устойчивые эмульсии в обычных условиях.

2) образование пленок и их разрыв на мелкие капли с УЗ.

Перевод грубых эмульсий в тонкие называется гомогенизацией .

Превращение эмульсий называется обращением фаз эмульсии и происходит при введении соответствующего эмульгатора либо при механическом разрушении стабилизирующих пленок (сбивание сливок в масло).

Разрушение эмульсий происходит самопроизвольно. Иногда в промышленности надо ускорить разрушение. Для ускорения применяются методы:

1) химическое разрушение защитной пленки реагентом (например, мыльной пленки сильной кислотой), чаще всего электролитами.

2) прибавление эмульгатора для обращения фаз эмульсии

3) адсорбционное замещение эмульгатора другим веществом, не способным образовать прочную пленку

4) нагревание

5) механическое воздействие, центрифугирование

6) действие электрического тока.

Моющее действие эмульсий - совокупность процессов смачивания, пептизации, эмульгирования и стабилизации загрязняющих частиц. Благодаря адсорбции молекул мыла на поверхности частиц происходит отрыв частиц (пептизация и стабилизация), образуется стойкая эмульсия, которая затем удаляется промывкой.

Эмульсии широко применяются в качестве смазывающих и охлаждающих жидкостей. Пример - фрезол - эмульсия из масла и воды. В виде эмульсии получают битумные материалы, пропиточные композиции, пестициды, лекарственные и косметические средства, фотоматериалы. Многие лекарства готовят в виде эмульсий, причем наружные типа "вода в масле", внутренние - наоборот.

ПЕНЫ

это концентрированная эмульсия газа в жидкости или твердом теле. Характерное свойство - ячеистая структура, где пузырьки воздуха разделены тонкими пленками. Если не так, то это просто эмульсия (мутная вода из крана). Для получения пены необходим стабилизатор - пенообразователь, который снижает поверхностное натяжение, адсорбируясь на поверхности. Механизм образования: при выходе пузырька воздуха из жидкости в его пленке формируются два слоя ориентированных молекул ПАВ. Возникают двойные электрические или сольватные слои, обеспечивающие агрегативную устойчивость пены. С увеличением отношения объема пены к объему жидкости, пошедшей на ее образование, форма пузырьков изменяется от сферической до ячеистой или сотообразной, то-есть многогранной.

Пенообразователи: сапонин, желатин, казеин. Пены широко применяются в промышленности. В химической промышленности пены способствуют ускорению реакций за счет большой поверхности контакта взаимодействующих фаз. Применяются как моющие средства. Пены применяются при флотации руд - обогащения руд обработкой в тонкоизмельченном состоянии водой, содержащей масло и эмульгатор. Руда - гидрофобна, пустая порода (силикаты, карбонаты) - гидрофильна. Пенообразователь - сосновое масло. Гидрофильные частицы смачиваются водой и тонут, а гидрофобные всплывают с маслом на поверхность в пене.

Пены применяются для тушения пожаров. Преграждают доступ воздуха.

Пены часто мешают, например, при фильтровании, очистке сточных вод. Для гашения нежелательных пен необходимы пеногасители (которые лучше адсорбируются и вытесняют пенообразователи). Механическое разрушение пен.

Гидрофобные золи при их образовании почти всегда «загрязняются» различными примесями, чаще всего электролитами. Особенно загрязняются золи, в которых в избытке введен стабилизатор. Чаще в системе присутствует исходный электролит. Для получения коллоидных растворов с наибольшей устойчивостью необходимо удалять из них примеси. Рассмотрим различные методы очистки золей.

3.1 Диализ

Диализ – это процесс освобождения коллоидных растворов от примесей, способных проникать через полупроницаемые мембраны. Этот метод очистки, предложенный еще Грэмом, является наиболее простым и доступным. Процесс очистки основан на способности примесных ионов и молекул малых размеров свободно проникать через полупроницаемые мембраны, тогда как крупные коллоидные частицы такой способностью не обладают.

Полупроницаемыми являются различные растительные, животные и искусственные мембраны; их можно приготовить из пергамента, бычьего, свиного и рыбьего пузыря; из коллодия, целлофана и т.д. Приборы, в которых проводится диализ, называют диализаторами. На рис 20 изображен простейший диализатор Грэма.

Рис 2 Схема простейшего диализатора

тп - полупроницаемая перепонка (мембрана)

В нем очищаемый золь контактирует с проточной дистиллированной водой через полупроницаемую мембрану. Чем больше разность концентраций по обе стороны мембраны, тем эффективнее идет диализ. Вот почему очистка золя ускоряется, если во внешней камере диализатора вода проточная или часто сменяется. Однако даже при этих условиях диализ идет очень медленно, длится иногда недели и даже месяцы и требует огромного количества растворителя. Для ускорения процесса диализа было предложено использовать электрический ток.


3.2 Электродиализ

Этот метод представляет собой ускоренный процесс диализа с применением электрического тока. В электродиализаторах различных конструкций имеется три камеры (рис.21) с внутренними стенками из полупроницаемых мембран. В среднюю камеру наливают коллоидный раствор, подлежащий очистке, а во внешние камеры растворитель – проточную воду. Во внешних камерах находятся электроды, на которые подается напряжение постоянного тока. При падении потенциала 20-50 в/см и более образуется направленное движение ионов к соответствующим электродам. Поскольку ионы свободно проходят через полупроницаемую перегородку, а коллоидно-дисперсные частицы не проходят, коллоидный раствор постепенно очищается от электролитов.

Рис 3 Электродиализатор Паули; 1 – коллоидный раствор; 2 – электроды

Продолжительность электролиза в отличие от простого диализа измеряется не днями, а лишь часами и минутами, причем затрата растворителя сведена до минимума. В настоящее время широкое применение метод электродиализа получил в биохимии и медицине, а также в народном хозяйстве.

3.3 Компенсационный диализ или вивидиализ

Для исследования биологических жидкостей Михаэлисом и Рона был предложен метод, позволяющий определять концентрацию тех или иных низкомолекулярных веществ, находящихся в свободном состоянии в коллоидных растворах.

Сущность компенсационного диализа заключается в том, что жидкость в диализаторе омывается не чистым растворителем, а растворами с различными концентрациями определяемого вещества. Так, например, сахар в сыворотке крови, не связанный с белками, определяется путем диализа сыворотки против изотонического раствора, к которому прибавляют различные количества сахара. Концентрация сахара в солевом растворе при диализе не меняется лишь в том случае, если оно равно концентрации свободного сахара в сыворотке. Этот метод позволяет судить об истинных концентрациях веществ в исследуемых коллоидных растворах. Таким путем, например, было выявлено наличие глюкозы и мочевины в крови в свободном состоянии.

Примерно на том же принципе основано прижизненное определение низкомолекулярных составных частей крови методом вивидиализа (вивидиффузия по Абелю). В концы перерезанного кровеносного сосуда вставляют стеклянные канюли, разветвленные части которой соединяются между собой трубочками из коллодия и вся система погружается в сосуд, заполняемый физиологическим раствором NaCL или водой. Было установлено, что аммиакаты в крови, так же как и глюкоза, могут находиться в свободном состоянии.

На принципе компенсационного вивидиализа был сконструирован аппарат, получивший название «искусственной почки», при помощи которого можно освобождать кровь от продуктов обмена веществ и, следовательно, временно замещать функцию больной почки. Показаниями к применению «искусственной почки» является острая почечная недостаточность, например, при отравлении сулемой, сульфаниламидными препаратами, при уремии после переливания крови, при тяжелых ожогах, токсикозе беременности и т.п.

3.4 Ультрафильтрация

Ультрафильтрацией называют фильтрование коллоидного раствора через полупроницаемые мембраны, которые укрепляются в специальных ультрафильтрах на твердой пористой подкладке.


Рис 5 Ультрафильтрация под давлением

Применяя для ультрафильтров мембраны с определенной степенью пористости, можно в известной мере произвести разделение коллоидных частиц и одновременно приближенно определить их размеры. Этим методом впервые были определены размеры целого ряда вирусов и бактериофагов.

В настоящее время методы ультрафильтрации иногда применяют в сочетании с электродиализом. Этот комбинированный метод получил название метода электроультрафильтрации. В таблице 4 дано сопоставление относительных скоростей очистки по различным методам при сравнимых условиях.

Таблица 4

Относительные скорости очистки растворов

Как видим, метод электроультрафильтрации по скорости превосходит метод электродиализа. Идея этого метода впервые была высказана в 1913г. А.В.Думанским, который применил центрифугу для осаждения коллоидных частиц. За последние годы этот метод получил исключительно широкое применение в коллоидной химии. В ультрацентрифуге оседают не только коллоидные частицы гидрофобных коллоидов, но и молекулы белков и высокомолекулярных соединений. Данный метод используют для вычисления молекулярного веса высокомолекулярных соединений, для определения среднего радиуса коллоидных частиц.

Диализ заключается в очистке коллоидных систем от ионов и молекул низкомолекулярных веществ в результате их диффузии в чистый растворитель через полупроницаемую перегородку (мембрану), через которую не проходят коллоидные частицы. Периодически или непрерывно сменяя растворитель в приборе для диализа – диализаторе (рис.15), можно практически полностью удалить из дисперсных систем примеси электролитов и низкомолекулярных неэлектролитов.

Рис. 15. Схема диализатора:

А – дисперсная система; Б – растворитель (вода); М – мембрана

Недостатком метода является большая длительность процесса очистки (недели, месяцы).

Электродиализ – это процесс диализа в условиях наложения постоянного электрического поля, под действием которого катионы и анионы приобретают направленное движение к электродам, и процесс очистки значительно ускоряется.

Компенсационный или вивидиали з применяют тогда, когда необходимо освободиться лишь от части низкомолекулярных примесей. В этом случае растворитель заменяют раствором НМВ, которые необходимо оставить в коллоидном растворе.

По принципу вивидиализа работает аппарат «искусственная почка» (АИП) (рис.16), применяемый при острой почечной недостаточности, которая может наступить в результате отравления, при тяжелых ожогах и т.п.

Рис. 16. Схема аппарата «Искусственная почка»

Аппарат для гемодиализа (прообраз АИП) создал амер. ученый Дж. Абель в 1913 году, а голландский ученый В.Колф в 1944 году впервые применил его на практике.

Работа искусственной почки основана на принципе диализа веществ через полупроницаемую мембрану (целлофан) вследствие разницы их концентраций в крови и диализирующем растворе, который содержит основные электролиты крови и глюкозу в близких к физиологическим концентрациях и не содержит веществ, которые надо удалять из организма (мочевина, креатинин, мочевая кислота, сульфаты, фосфаты и др.). Белки, форменные элементы крови, бактерии и вещества с молекулярной массой более 30000 через мембрану не проходят. При гемодиализе, т. е. работе искусственной почки, кровь больного отсасывается через катетер (1) насосом (2) из нижней полой вены, проходит внутри камер из целлофановых листов диализатора (3), которые снаружи омываются диализирующим раствором, подаваемым другим насосом, и, частично очищенная, возвращается в одну из поверхностных вен. Гемодиализ проводится от 4 до 12 ч; в течение этого времени, чтобы кровь не свёртывалась, в неё вводят противосвёртывающие вещества (гепарин). При острой почечной недостаточности гемодиализ повторяют через 3–6 дней до восстановления функции почек; при хронической недостаточности, когда его необходимо проводить 2–3 раза в неделю в течение нескольких месяцев или лет, между лучевой артерией и поверхностной веной предплечья устанавливают тефлоновый шунт, с которым и соединяют искусственную почку. В этом случае кровь может поступать в диализатор без использования насоса.



Ультрафильтрация – фильтрование дисперсной системы через полупроницаемую мембрану, пропускающую дисперсионную среду с низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы.

Для ускорения процесса ультрафильтрации ее проводят, создавая разность давления на мембране, понижая давление под мембраной (создавая разрежение, вакуумируя) или повышая давление над мембраной. Для предотвращения разрыва мембраны ее помещают на твердую пористую пластинку (рис. 17).

Так как низкомолекулярные примеси (чужеродные электролиты) способны разрушать коллоидные системы, полученные золи во многих случаях приходится очищать. Очищают также и дисперсные системы природного происхождения (латексы, сырую нефть, вакцины, сыворотки и т.д.). Для очистки от примесей используют: диализ, электродиализ, ультрафильтрацию.

Диализ – извлечение из золей низкомолекулярных веществ чистым растворителем с помощью полупроницаемой перегородки (мембраны), через которую не проходят коллоидные частицы. В настоящее время предложено много усовершенствованных конструкций диализаторов, обеспечивающих более быстрый процесс очистки. Интенсификация диализа достигается за счет: увеличением поверхности мембран; уменьшением слоя очищаемой жидкости; частой или непрерывной сменой внешней жидкости; повышением температуры.

Электродиализ – диализ, ускоренный применением внешнего электрического поля. Электродиализ обусловлен миграцией ионов через мембрану под действием приложенной разности потенциалов порядка 40 В/см.

Ультрафильтрация – электродиализ под давлением. По существу, ультрафильтрация является не методом очистки золей, а лишь методом их концентрирования.

Интересным примером сочетания диализатора и ультрафильтрации является аппарат «искусственная почка», предназначенный для временной замены функции почек при острой почечной недостаточности. Аппарат оперативным путем подключается к системе кровообращения больного. Кровь под давлением, создаваемым пульсирующим насосом («искусственное сердце») протекает в узком зазоре между двумя мембранами, омываемыми снаружи физиологическим раствором. Благодаря большой рабочей площади мембран (~ 15000 см 2) из крови сравнительно быстро (3-4 часа) удаляются «шлаки» – продукты обмена и распада тканей (мочевина, креатин, ионы калия и т.д.).

Применяя для ультрафильтров мембраны с определенной пористостью, можно в известной мере разделить по размерам коллоидные частицы и одновременно приближенно определить их размеры. Этим способом были определены размеры частиц ряда вирусов и бактериофагов.

Ультрафильтрацию используют для очистки сточных вод от механических примесей. Этим методом проводят отделение молекул жидкости от частиц коллоидной системы.

В зависимости от дисперсности сточных вод применяют те или иные разновидности фильтровальных перегородок. Для микрофильтрации больших количеств природной воды на водопроводных станциях при очистке преимущественно от планктона и микроорганизмов служат металлические сетки, в случае очистки от субмикронных частиц и макромолекул применяют полимерные мембраны с различным размером пор.


Вопросы и задания для самоконтроля

1. Что изучает дисциплина «Коллоидная химия»?

2. В чем отличие коллоидных растворов от истинных?

3. На каких признаках основан каждый тип классификации дисперсных систем?

4. Какие существуют методы получения дисперсных систем? В чем заключается суть каждого метода?

5. Каким образом можно очистить коллоидные системы? Зачем это нужно делать?

Глава 2
ТЕРМОДИНАМИКА
ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

В дисперсных системах большая часть всех молекул или атомов, составляющих вещество, находится на поверхности раздела фаз. Эти поверхностные молекулы отличаются от молекул, находящихся внутри фазы по своему энергетическому состоянию, что приводит к возникновению избыточной поверхностной энергии. Избыточная поверхностная энергия равна произведению поверхностного натяжения на площадь межфазной поверхности:

Любая термодинамическая система стремиться уменьшить свою поверхностную энергию. Избыточная поверхностная энергия может уменьшиться за счет:

· уменьшения поверхностного натяжения: адсорбция, адгезия, смачивание, образование двойного электрического слоя;

· уменьшения площади поверхности: сферическая форма капель (сглаживание поверхности), объединение частиц (коагуляция, агрегация, коалесценция).

Для очистки дисперсных систем от примесей используют фильтрацию, диализ, электродиализ, ультрафильтрацию.

Фильтрация (лат. Filtrum – войлок) – это способ разделения, основанный на пропускании измельченной смеси через пористую пленку. При этом малые частицы дф проходят через поры обычных фильтров, а крупные частицы задерживаются. Т.о., фильтрацию применяют также для удаления крупных частиц из дисперсии.

Диализ (греч. Dyalisis – отделение) – это способ удаления из дисперсных систем и растворов ВМС низкомолекулярных соединений с помощью мембран. В диализаторе жидкая смесь, подвергаемая диализу, отделена от чистого растворителя соответствующей мембраной (рис. 2.6). Частицы дф и макромолекулы задерживаются мембраной, а небольшие молекулы и ионы малого размера диффундируют через мембрану в растворитель и при …
его достаточно частой замене практически полностью могут быть удалены из диализуемой смеси.

Разделительная способность мембран по отношению к низкомолекулярным веществам основана на том, что малые молекулы и ионы свободно проходят через поры (капилляры), пронизывающие мембрану, или растворяются в веществе мембраны.

В качестве мембран для диализа применяют различные пленки, как естественного происхождения, так и искусственные. Естественные пленки: бычий или свиной мочевой пузырь, плавательный пузырь рыб. Искусственные: пленки из нитроцеллюлозы, ацетилцеллюлозы, целлофана, желатина и др. полимеров.

Существует большое разнообразие диализаторов – приборов для проведения диализа. Все диализаторы построены по общему принципу. Диализируемая смесь (внутренняя жидкость) находится в сосуде, в котором она отделена от воды или другого растворителя (внешняя жидкость) мембраной (рис. 2.6). скорость диализа возрастает с увеличением поверхности мембраны, ее пористости и размера пор, с повышением температуры, интенсивности перемешивания диализируемой жидкости, скоростью смены внешней жидкости и уменьшается с ростом толщины мембраны.

Для увеличения скорости диализа низкомолекулярных электролитов применяют электродиализ. С этой целью в диализаторе создают постоянное электрическое поле с падением потенциала 20-250 В/см и выше (рис. 2.7). Проведение диализа в электрическом поле позволяет ускорить очистку дисперсных систем в несколько десятков раз.

Ультрафильтрацию (лат. Ultra – сверх, filtrum – войлок) применяют для очистки систем, содержащих микрочастицы (золи, растворы ВМС, взвеси бактерий, вирусов). В основе метода лежит продавливание разделяемой смеси через фильтры с порами, пропускающими только молекулы и ионы низкомолекулярных веществ. Ультрафильтрацию можно рассматривать как диализ под давлением. Ее широко используют для очистки воды, белков, нуклеиновых кислот, ферментов, витаминов и др.