Проект аномалия воды. Аномальные свойства воды, или удивительное рядом

«Вода – это жизнь» - это высказывание мы знаем с детства, но не всегда придаем значение тому, что нас окружает постоянно, без чего мы не можем обойтись.

А Вы знаете, что такое “ВОДА” ?

“Вода, у тебя нет ни вкуса, ни цвета, ни запаха, тебя невозможно описать, тобой наслаждаются, не ведая, что ты такое”.

Антуан де Сент-Экзюпери.

Сначала я приведу несколько примеров из истории, чтобы Вы поняли, что этот вопрос не такой уж и простой!

Согласно хроникам, в 1472 году аббат Карл Гастинстингс был по ложному доносу схвачен и допрошен по делу о наведении болезни на некую уважаемую женщину. Заключённому в темницу аббату каждый день давали лишь кусок сухого хлеба и ковш гнилой зловонной воды. Через 40 дней тюремщик заметил, что за это время преподобный Карл не только не потерял, но казалось, приобрёл здоровье и силу, что только убедило инквизиторов в связи аббата с нечистой силой. Позже, под жестокими пытками Карл Гастинстингс сознался, что над гнилой водой, которую ему приносили он читал молитву, благодаря Господа за ниспосланные ему испытания. После чего вода становилась мягкой на вкус, свежей и прозрачной.

В истории известны случаи изменения структуры воды посредством воздействия мысли. К примеру, зимой 1881 года корабль «Лара» следовал рейсом из Ливерпуля в Сан-Франциско. На третий день пути на корабле начался пожар. Среди покинувших судно был капитан Нейл Кери. Потерпевшие бедствие стали испытывать муки жажды, которые возрастали с каждым часом. Потом, когда они после мучительного скитания по морю благополучно достигли берега, капитан, человек весьма трезвого отношения к действительности в следующих словах описал то, что спасло их: «Мы мечтали о пресной воде. Мы стали воображать, как вода вокруг шлюпки из голубой морской превращается в зеленоватую пресную. Я собрался с силами и зачерпнул её. Когда я попробовал, она оказалась пресной».

Кратко о воде с точки зрения биохимии

Вода – наиболее распространенное на Земле вещество. Ее количество достигает 1018 тонн, и она покрывает приблизительно четыре пятых земной поверхности. Вода занимает 70% поверхности Земли. Столько же (70%) её в организме человека. Эмбрион почти целиком (95%) состоит из воды, в теле новорожденного её – 75%. Лишь в старости количество воды в организме человека – 60%.. Это единственное химическое соединение, которое в природных условиях существует в виде жидкости, твердого вещества (лед) и газа (пары воды). Вода играет жизненно важную роль в промышленности, и быту; она совершенно необходима для поддержания жизни. Из 1018 т воды на Земле на пресную воду приходятся всего лишь 3%, из которых 80% недоступны для использования, поскольку представляют собой лед, образующий полярные шапки. Пресная вода оказывается доступной человеку в результате участия в гидрологическом цикле, или круговороте воды в природе. Ежегодно в круговорот воды, в результате ее испарения и выпадения осадков в виде дождя или снега, вовлекается приблизительно 500 000 км 3 воды. По теоретическим подсчетам максимальное количество пресной воды, доступное для использования, составляет приблизительно 40 000 км 3 в год. Речь идет о той воде, которая стекает с поверхности земли в моря и океаны.

Свойства воды уникальны. Прозрачная жидкость без запаха, вкуса и цвета (молекулярная масса – 18,0160, плотность – 1 г/см 3 ; уникальный растворитель, способна окислять почти все металлы и разрушать твёрдые горные породы). Попытки представить воду как ассоциированную жидкость с плотной упаковкой молекул воды, подобно шарикам какой-либо емкости, не соответствовали элементарным фактическим данным. В этом случае удельная плотность воды должна была бы быть не 1 г/см 3 , а более 1,8 г/см 3 .

Сферические капли воды имеют наименьшую (оптимальную) поверхность объёма. Поверхностное натяжение равно 72,75 дин/см. Удельная теплоёмкость воды выше, чем у большинства веществ. Вода поглощает большое количество теплоты, при этом мало нагреваясь.

Второе важное доказательство в пользу особой структуры молекулы воды состояла в том, что в отличие от других жидкостей вода – это было уже известно – обладает сильным электрическим моментом, составляющим ее дипольную структуру. Поэтому нельзя было представить наличие весьма сильного электрического момента молекулы воды в симметрической конструкции двух атомов водорода относительно атома кислорода, расположив все входящие в нее атомы по прямой линии, т.е. Н-О-Н.

Структура воды в живом организме во многом напоминает структуру кристаллической решетки льда. И именно этим объясняются сейчас уникальные свойства талой воды, долгое время сохраняющей структуру льда. Талая вода гораздо легче обычной вступает в реакцию с различными веществами, и организму не надо тратить добавочную энергию на перестройку ее структуры.

В жидком виде связи соседних молекул воды образуют непостоянные и быстротечные структуры. В замёрзшем виде каждая молекула льда жёстко связана с четырьмя другими.

Доктором биологический наук С.В.Зениным были обнаружены стабильные долгоживущие кластеры воды. Оказалось, что вода представляет собой иерархию правильных объёмных структур. В основе, которых лежат кристаллоподобные образования, состоящие из 57 молекул. А это приводит к появлению структур более высокого порядка в виде шестигранников, состоящих из 912 молекул воды. Свойства кластеров зависят от соотношения выступающих на поверхность кислорода с водородом. Конфигурация реагирует на любое внешнее воздействие и примеси. Между гранями элементов кластеров действуют кулоновские силы притяжения. Это позволяет рассматривать структурированное состояние воды в виде особой информационной матрицы.

Неразгаданные свойства воды

Вода всегда представляла собой большую загадку для человеческого ума. Много непостижимого нашему разуму остается еще в свойствах и действиях воды. Наблюдая за текущим или струящимся потоком воды, человек может снимать свое нервное и психическое напряжение. Чем это вызвано? Насколько известно, вода не содержит никаких веществ, способных дать такой эффект. Ученые утверждают, что вода обладает способностью принимать и передавать любую информацию, сохраняя ее в неприкосновенности. В воде растворено прошлое, настоящее, будущее. Эти свойства воды широко использовались и используются в магии и целительстве. До сих пор еще существуют народные целители и целительницы, «нашептывающие на воду», излечивающие этим болезни. Текущая вода постоянно забирает энергию Космоса и в чистом виде отдает ее в окружающее околоземное пространство, где она поглощается всеми живыми организмами, располагающимися в пределах досягаемости потока, поскольку образованное текущей водой биополе постоянно увеличивается за счет отдаваемой энергии. Чем быстрее движется водный поток, тем сильнее это поле. Под воздействием этой силы происходит выравнивание энергетической оболочки живых организмов, закрываются «пробои» в невидимой простому человеку оболочке тела (ауре), организм исцеляется.

Аномальные свойства воды

Первое аномальное свойство воды – аномалия точек кипения и замерзания: Если бы вода – гидрид кислорода – Н 2 О была бы нормальным мономолекулярным соединением, таким, например, как ее аналоги по шестой группе Периодической системы элементов Д.И. Менделеева гидрид серы Н 2 S, гидрид селена Н 2 Se, гидрид теллура Н 2 Те, то в жCидком состоянии вода существовала бы в диапазоне от минус 90 o С до минус 70 o С. При таких свойствах воды жизни на Земле не существовало бы.

“Ненормальные” температуры плавления и кипения воды далеко не единственная аномальность воды. Для всей биосферы исключительно важной особенностью воды является ее способность при замерзании увеличивать, а не уменьшать свой объем, т.е. уменьшать плотность. Это вторая аномалия воды, которая именуется аномалией плотности. На это особое свойство воды впервые обратил внимание еще Г. Галилей. При переходе любой жидкости (кроме галлия и висмута) в твердое состояние молекулы располагаются теснее, а само вещество, уменьшаясь в объеме, становится плотнее. Любой жидкости, но не воды. Вода и здесь представляет собой исключение. При охлаждении вода сначала ведет себя как и другие жидкости: постепенно уплотняясь, она уменьшает свой объем. Такое явление можно наблюдать до +4°С (точнее до +3,98°С). Именно при температуре +3,98°С вода имеет наибольшую плотность и наименьший объем. Дальнейшее охлаждение воды постепенно приводит уже не к уменьшению, а к увеличению объема. Плавность этого процесса вдруг прерывается и при 0°С происходит резкий скачок увеличения объема почти на 10%! В это мгновение вода превращается в лед. Уникальная особенность поведения воды при охлаждении и образовании льда играет исключительно важную роль в природе и жизни. Именно эта особенность воды предохраняет от сплошного промерзания в зимний период все водоемы земли – реки, озера, моря и тем самым спасает жизнь.

В отличие от пресной воды морская вода при охлаждении ведет себя иначе. Замерзает она не при 0°С, а при минус 1,8-2,1°С – в зависимости от концентрации растворенных в ней солей. Имеет максимальную плотность не при + 4°С, а при -3,5°С. Таким образом она превращается в лед, не достигая наибольшей плотности. Если вертикальное перемешивание в пресных водоемах прекращается при охлаждении всей массы воды до +4°С, то в морской воде вертикальная циркуляция происходит даже при температуре ниже 0°С. Процесс обмена между верхними и нижними слоями идет непрерывно, создавая благоприятные условия для развития животных и растительных организмов.

Все термодинамические свойства воды заметно или резко отличаются от других веществ.

Наиболее важная из них – аномалия удельной теплоемкости. Аномально высокая теплоемкость воды делает моря и океаны гигантским регулятором температуры нашей планеты, в результате чего не происходит резкого перепада температур зимой и летом, днем и ночью. Континенты, расположенные вблизи морей и океанов, обладают мягким климатом, где перепады температуры в различные времена года бывают незначительными.

Мощные атмосферные потоки, содержащие огромное количество теплоты, поглощенное в процессе парообразования, гигантские океанические течения играют исключительную роль в создании погоды на нашей планете.

Аномалия теплоёмкости заключается в следующем:
При нагревании любого вещества теплоемкость неизменно повышается. Да, любого вещества, но не воды. Вода – исключение, она и здесь не упускает возможности быть оригинальной: с повышением температуры изменение теплоемкости воды аномально; от 0 до 37°С она понижается и только от 37 до 100°С теплоемкость все время растет. В пределах температур, близких к 37°С, теплоемкость воды минимальна. Именно эти температуры – область температур человеческого тела, область нашей жизни. Физика воды в области температур 35-41°С (пределы возможных, нормально протекающих физиологических процессов в организме человека) констатирует вероятность достижения уникального состояния воды, когда массы кристаллической и объемной воды равны друг другу и способность одной структуры переходить в другую максимальная. Это замечательное свойство воды предопределяет равную вероятность течения обратимых и необратимых биохимических реакций в организме человека и обеспечивает “легкое управление” ими.

Общеизвестна исключительная способность воды растворять любые вещества. И здесь вода демонстрирует необычные для жидкости аномалии, и в первую очередь аномалии диэлектрической постоянной воды . Это связано с тем, что ее диэлектрическая постоянная (или диэлектрическая проницаемость) очень велика и составляет 81, в то время как для других жидкостей она не превышает 10. В соответствии с законом Кулона сила взаимодействия двух заряженных частиц в воде будет в 81 раз меньше, чем, например, в воздухе, где эта характеристика равна единице. В этом случае прочность внутримолекулярных связей уменьшается в 81 раз и под действием теплового движения молекулы диссоциируют с образованием ионов. Необходимо отметить, что из-за исключительной способности растворять другие вещества вода никогда не бывает идеально чистой.

Следует упомянуть еще об одном удивительной аномалии воды – исключительно высоком поверхностном натяжении. Из всех известных жидкостей только ртуть имеет более высокое поверхностное натяжение. Это свойство проявляется в том, что вода всегда стремится сократить свою поверхность. Некомпенсированные межмолекулярные силы наружного (поверхностного) слоя воды, вызванные квантовомеханическими причинами, создают внешнюю упругую пленку. Благодаря пленке многие предметы, будучи тяжелее воды, не погружаются в воду. Если, например, стальную иголку осторожно положить на поверхность воды, то иголка не тонет. А ведь удельный вес стали почти в восемь раз больше удельного веса воды. Всем известна форма капли воды. Высокое поверхностное натяжение позволяет воде иметь шарообразную форму при свободном падении.

Поверхностное натяжение и смачивание являются основой особых свойств воды и водных растворов, названого – капиллярностью. Капиллярность имеет огромное значение для жизни растительного, животного мира, формирования структур природных минералов и плодородия земли. В каналах, которые во много раз уже человеческого волоса, вода приобретает удивительные свойства. Она становится более вязкой, уплотняется в 1,5 раза, а замерзает при минус 80-70°С.

Причиной сверханомальности капиллярной воды являются межмолекулярные взаимодействия, тайны которых еще далеко не раскрыты.

Ученым и специалистам известна так называемая поровая вода . В виде тончайшей пленки она устилает поверхность пор и микрополостей пород и минералов земной коры и других объектов живой и неживой природы. Связанная межмолекулярными силами с поверхностью других тел, эта вода, как и капиллярная вода, обладает особой структурой.

Таким образом, аномальные и специфические свойства воды играют ключевую роль в ее многообразном взаимодействии с живой и неживой природой. Все эти необычные особенности свойств воды настолько “удачны” для всего живого, что делает воду незаменимой основой существования жизни на Земле.

Вода - самое удивительное и самое загадочное вещество на Земле. Она играет важнейшую роль во всех жизненных процессах и явлений, происходящих на нашей планете и за ее пределами. Именно поэтому, древние философы рассматривали воду (hydor) в качестве важ-нейшей составляющей части материи.

Современная наука утвердила роль воды как универсального, планетарного компонента, определяющего структуру и свойства бесчисленного множества объектов живой и неживой природы.

Развитие молекулярных и структурно-химических представлений позволило дать объясне-ние исключительной способности молекул воды образовывать связи с молекулами почти всех веществ.

Стала проясняться также роль связанной воды в формировании важнейших физических свойств гидратированных органических и неорганических веществ. Большой и все возрастающий научный интерес привлекает проблема биологической роли воды.

Заселенная живыми организмами наружная оболочка нашей планеты - биосфера является вместилищем жизни на Земле. Её первоосновой, ее незаменимым компонентом является вода. Вода - это и строительный материал, который используется для создания всего живого, и среда, в которой протекают все жизненные процессы, и растворитель, выносящий из организма вредные для него вещества, и уникальный транспорт, снабжающий биологические структуры всем необходимым для нормального протекания в них сложнейших физико-химических процессов. И это всеобъемлющее влияние воды на любую живую структуру может быть не только положительным, но и отрицательным. В зависимости от своего состояния вода может быть как созидателем цветущей жизни, так и ее разрушителем, могильщиком - всё зависит от ее химического и изотопного состава, структурных, биоэнергетических свойств. Не случайно академик И. В. Петрянов сказал: "Вода - это подлинное чудо природы!".

Аномальные свойства воды были открыты учеными в результате длительных и трудоемких исследований. Эти свойства столь привычны и естественны в обыденной нашей жизни, что обычный человек даже не подозревает об их существовании. А вместе с тем вода - вечная спутница жизни на Земле действительно оригинальна и неповторима.

Аномальные свойства воды свидетельствуют о том, что молекулы Н2О в воде довольно прочно связаны между собой и образуют характерную молекулярную конструкцию, которая сопротивляется любым разрушающим воздействиям, например, тепловым, механическим, электрическим. По этой причине, например, необходимо затратить много тепла, чтобы превратить воду в пар. Эта особенность объясняет сравнительно высокую удельную теплоту испарения воды. Становится понятным, что структура воды, характерные связи между молекулами воды, лежат в основе особых свойств воды. Американские ученые У. Латимер и У. Родебуш предложили в 1920 г. эти особые связи называть водородными и с этого времени представление об этом типе связи между молекулами навсегда вошло в теорию химической связи. Не вдаваясь в подробности, отметим только, что происхождение водородной связи обусловлено квантово-механическиими особенностями взаимодействия протона с атомами.

Однако наличие водородной связи у воды - это всего лишь необходимое, но не достаточное условие для объяснения не-обычных свойств воды. Самым важным обстоятельством, объясняющим основные свойства воды, является структура жидкой воды как целостной системы.

Еще в 1916 г. были разработаны принципиально новые представления о строении жидкости. Впервые с помощью рентгеноструктурного анализа показано, что в жидкостях наблюдается определенная регулярность расположения молекул или иначе - наблюдается ближний порядок расположения молекул. Первые ренгеноструктурные исследования воды провели нидерландские ученые в 1922 году В. Кеез и Дж. де Смедт. Ими было показано, что для жидкой воды характерна упорядоченное размещение молекул воды, т.е. вода имеет определённую регулярную структуру.

Действительно, структура воды в живом организме во многом напоминает структуру кристаллической решетки льда. И именно этим объясняются сейчас уникальные свойства талой воды, долгое время сохраняющей структуру льда. Талая вода гораздо легче обычной вступает в реакцию с различными веществами, и организму не надо тратить добавочную энергию на перестройку ее структуры.

Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28", направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру (при этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный).

Известно, что биологические ткани на 70-90% состоят из воды. Это позволяет предполагать, что многие физиологические явления могут отображать молекулярные особенности не только растворенного вещества, но в равной степени и растворителя - воды. Подобного рода соображения, высказываемые такими крупными современными учеными, как Сент-Дьерди, Поллинг, Клотц и другие, вызвали новую волну повышенного интереса к вопросам структуры и состояния воды в различных системах.

Первую теорию о структуре воды выдвинули английские исследователи Дж. Бернал и Фаулер. Они создали концепцию о тетраэдрической структуре воды.

В августовском номере 1933 г. только что созданного международного журнала по химической физике "Journal of Chemical Physics” была опубликована их классическая работа о структуре молекулы воды и ее взаимодействии с себе подобными молекулами и ионами разных сортов.

В своей научной интуиции Дж. Бернал и Р. Фаулер опирались на обширный материал накопленных экспериментальных и теоретических данных в области изучения строения молекулы воды, структуры льда, строения простых жидкостей, на данные ренгеноструктурного анализа воды и водных растворов. Прежде всего, они определили роль водородных связей в воде.

Было известно, что в воде есть ковалентные и водородные связи. Ковалентные связи не рвутся при фазовых переходах воды: вода-пар-лед. Лишь электролиз, нагревание воды на железе и т.п. разрывает ковалентные связи воды. Водородные связи в 24 раза слабее ковалентных. При таянии льда, снега, водородные связи в образующейся воде частично сохраняются, в паре воды они все разорваны.

Попытки представить воду как ассоциированную жидкость с плотной упаковкой молекул воды, подобно шарикам какой-либо емкости, не соответствовали элементарным фактическим данным. В этом случае удельная плотность воды должна была бы быть не 1 г/см3, а более 1,8 г/см3.

Второе важное доказательство в пользу особой структуры молекулы воды состояла в том, что в отличие от других жидкостей вода - это было уже известно - обладает сильным электрическим моментом, составляющим ее дипольную структуру. Поэтому нельзя было представить наличие весьма сильного электрического момента молекулы воды в симметрической конструкции двух атомов водорода относительно атома кислорода, расположив все входящие в нее атомы по прямой линии, т.е. Н-О-Н.

Экспериментальные данные, а также математические расчеты окончательно убедили английских ученых в том, что молекула воды "однобока" и имеет "угловую" конструкцию, а оба атома водорода должны быть смещены в одну сторону относительно атома кислорода на угол 104,50

Именно поэтому модель воды Бернала-Фаулера - трехструктурная, с наличием нескольких раздельных типов структур. Согласно этой модели, структура воды определяется структурой ее отдельных молекул.

В дальнейшем была развита идея считать жидкую воду псевдокристаллом, согласно которой вода в жидком состоянии представляет собой как бы смесь трех компонент с различными структурами (структура льда, кристаллического кварца и плотно упакованная структура обычной воды).

Вода - это ажурный псевдокристалл, в котором отдельные тетраэдрические молекулы H2О связаны друг с другом направленными водородными связями, образуя гексагональные структуры как в структуре льда.

В дальнейшем модель воды Бернала-Фаулера была уточнена и пересмотрена. На ее основе возникли более 20 моделей структуры воды, которые можно разделить на 5 групп; 1) непрерывные, 2) смешанные модели структуры воды (двух- и трехструктурные), 3) модели с заполнением пустот, 4) кластерные и 5) модели ассоциатов.

Непрерывные модели структуры воды постулируют, что вода - это единая тетраэдрическая сеть водо-родных связей между отдельными молекулами воды, которые искривляются при плавлении льда.

Смешанные модели: вода - это смесь двух или трех структур, например, одиночных молекул, их ассоциатов различной сложности - кластеров.

Дальнейшее усовершенствование этой модели привело к созданию модели с заполнением пустот (включая клатратные модели) и к кластерным моделям. Причём кластеры могут содержать более несколько сот молекул Н2О и подобно мерцающим скоплениям непрерырвно возникают и разрушаются вследствие местных флуктуаций плотности.

Широко известна кластерная модель структуры воды А.Фрэнка и В.Вена, усовершенствованная Г. Немети-Г. Шерагой (1962). По этой модели, в жидкой воде, наряду с мономерными молекулами имеются кластеры, рои молекул Н2О, объединенных водородными связями со временем жизни 10-10 - 10-11 сек. Они разрушаются и создаются вновь.

Практически все кластерные гипотезы воды осно-вываются на том, что жидкая вода состоит из сети из 4-кратно связанных молекул Н2О и мономеров, которые заполняют пространство между кластерами. На граничных поверхностях кластеров имеются 1, 2- или 3-х кратно связанные молекулы. Еще данную модель называют моделью "мерцающих скоплений". По С. Зенину, кластеры и ассоциаты являются основой структурной памяти воды - долговременной (стабильные) и кратковременной (лабильные, неустойчивые ассоциаты).

В настоящее время известно большое число гипотез и моделей структуры воды. Некоторые исследователи говорят о наличии в воде 10 различных структур воды с неодинаковыми кристаллическими решетками, различной плотностью и температурой плавления.

Профессор И.З. Фишер в 1961 г. ввел понятие о том, что структура воды зависит от времен-ного интервала, в течение которого ее определяют. Он различал три вида структуры воды:

. Мгновенная структура (время измерения t)

Структура воды средних отрезков времени, когда tд > t > to. 1 и 2 структуры общие со структурой льда. Эта структура существует больше времени осциляции, но меньше времени диффузии tд.

Структура, характерная для более длительных отрезков времени (>tд), когда молекула H2О передвигается на большие расстояния.

Д. Эзенберг и В. Каутсман связали названия этих трех структур воды с видами движения ее молекул, 1-ю структуру они назвали І-структурой (от английского instantenous - мгновенный), 2-ю - V-структурой (от английского vibrational - вибрационный), 3-ю - D-структурой (от английского diffusion - диффузионный).

Рентгеноструктурное исследование кристаллов воды, проведенное Морганом и Уорреном, показало, что воде свойственна структура, подобная структуре льда. В воде, также как и во льду, каждый атом кислорода окружен как в тетраэдре другими атомами кислорода. Расстояние между соседними молекулами неодинаково. При 25°С каждая молекула воды в каркасе имеет одного соседа на расстоянии 2,77 A и трех - на расстоянии 2,94 A, в среднем - 2,90 A. Среднее между ближайшими соседями молекулы воды примерно на 5,5% больше, чем между молекулами льда. Остальные молекулы находятся на расстояниях, промежуточ-ных между первыми и вторыми соседними дистанциями. Расстояние 4,1 A - это расстояние между атомами О-Н в молекуле Н2О.

По современным представлениям, такая структура в значительной мере определяется водородными связями, которые, объединяя каждую молекулу с ее четырьмя соседями, образуют весьма ажурную "тридимитоподобную" структуру с пустотами, превосходящими по размерам сами молекулы. Основное отличие структуры жидкой воды от льда - это более размытое расположение атомов в решетке, нарушение дальнего порядка. Тепловые колебания приводят к изгибу и разрыву водородных связей. Сошедшие с равновесных положений молекулы воды попадают в соседние пустоты структуры и на некоторое время задерживаются там, так как пустотам соответствуют относительные минимумы потенциальной энергии. Это ведет к увеличению координационного числа и к образованию дефектов решетки, наличие которых обусловливает аномальные свойства воды. Координационное число молекул (число ближайших соседей) меняется от 4,4 при 1,5 °С до 4,9 при 83 °С.

Согласно гипотезе нашего учёного соотечественника С.В. Зенина, вода представляет собой иерархию правильных объемных структур "ассоциатов" (clathrates), в основе которых лежит кристаллоподобный "квант воды", состоящий из 57 ее молекул, которые взаимодействуют друг с другом за счет свободных водородных связей. При этом 57 молекул воды (квантов), образуют структуру, напоминающую тетраэдр. Тетраэдр в свою очередь состоит из 4 додекаэдров (правильных 12-гранников). 16 квантов образуют структурный элемент, состоящий из 912 молекул воды. Вода на 80% состоит из таких элементов, 15% - кванты-тетраэдры и 3% - классические молекулы Н2О. Таким образом, структура воды связана с так называемыми платоновыми телами (тетраэдр, додекаэдр), форма которых связана с золотой пропорцией. Ядро кислорода также имеет форму платонова тела (тетраэдра).

Элементарной ячейкой воды являются тетраэдры, содержащие связанные между собой водородными связями четыре (простой тетраэдр) или пять молекул Н2О (объемно-центрированный тетраэдр).

При этом у каждой из молекул воды в простых тетраэдрах сохраняется способность образовывать водородные связи. За счет их простые тетраэдры могут объединяться между собой вершинами, ребрами или гранями, образуя различные кластеры со сложной структурой, например, в форме додекаэдра.

Объединяясь друг с другом, кластеры могут образовывать более сложные структуры.

Профессор Мартин Чаплин рассчитал и предположил иную модель воды, в основе которой лежит икосаэдр.

Согласно этой модели вода состоит из 1820 молекул воды - это в два раза больше, чем в модели Зенина. Гигантский икосаэдр в свою очередь состоит из 13 более мелких структурных элементов. Причем, так же как и у Зенина, структура гигантского ассоциата базируется на более мелких образованиях.

Таким образом, сейчас это является очевидным фактом, что в воде возникают ассоциаты воды, которые несут в себе очень большую энергию и информацию крайне высокой плотности.

Порядковое число таких структур воды так же высоко, как и порядковое число кристаллов (структура с максимально высоким упорядочением, которую мы только знаем), потому их также называют «жидкими кристаллами» или «кристаллической водой». Такая структура энергетически выгодна и разрушается с освобождением свободных молекул воды лишь при высоких концентрациях спиртов и подобных им растворителей [Зенин, 1994].

"Кванты воды" могут взаимодействовать друг с другом за счет свободных водородных связей, торчащих наружу из вершин “кванта” своими гранями. При этом возможно образование уже двух типов структур второго порядка. Их взаимодействие друг с другом приводит к появлению структур высшего порядка. Последние состоят из 912 молекул воды, которые по модели Зенина практически не способны к взаимодействию за счет образования водородных связей. Этим и объясняется, например, высокая текучесть жидкости, состоящей из громадных полимеров. Таким образом, водная среда представляет собой как бы иерархически организованный жидкий кристалл.

Изменение положения одного структурного элемента в этом кристалле под действием любого внешнего фактора или изменение ориентации окружающих элементов под влиянием добавляемых веществ обеспечивает, согласно гипотезе Зенина, высокую чувствительность информационной системы воды. Если степень возмущения структурных элементов недостаточна для перестройки всей структуры воды в данном объеме, то после снятия возмущения система через 30-40 мин возвращается в исходное состояние. Если же перекодирование, т. е. переход к другому взаимному расположению структурных элементов воды оказывается энергетически выгодным, то в новом состоянии отражается кодирующее действие вызвавшего эту перестройку вещества [Зенин, 1994]. Такая модель позволяет Зенину объяснить "память воды" и ее информационные свойства [Зенин, 1997].

Кроме того, структурированное состояние воды оказалось чувствительным датчиком различных полей. С. Зенин считает, что мозг, сам состоящий на 90% из воды, может, тем не менее, изменять её структуру.

Кластерная модель воды объясняет её многие аномальные свойства.

Первое аномальное свойство воды - аномалия точек кипения и замерзания: Если бы вода - гидрид кислорода - Н2О была бы нормальным мономолекулярным соединением, таким, например, как ее аналоги по шестой группе Периодической системы элементов Д.И. Менделеева гидрид серы Н2S, гидрид селена Н2Se, гидрид теллура Н2Те, то в жидком состоянии вода существовала бы в диапазоне от минус 90°C до минус 70°C.

При таких свойствах воды жизни на Земле не существовало бы. Но к счастью для нас, и для всего живого на свете, вода аномальна. Она не признает периодических закономерностей, характерных для бесчисленного множества соединений на Земле и в космосе, а следует своим, еще не вполне понятным для науки законам, подарившим нам удивительный мир жизни.

"Ненормальные" температуры плавления и кипения воды - далеко не единственная анормальность воды. Для всей биосферы исключительно важной особенностью воды является ее способность при замерзании увеличивать, а не уменьшать свой объем, т.е. уменьшать плотность. Это вторая аномалия воды, которая именуется аномалией плотности. На это особое свойство воды впервые обратил внимание еще Г. Галилей. При переходе любой жидкости (кроме галлия и висмута) в твердое состояние молекулы располагаются теснее, а само вещество, уменьшаясь в объеме, становится плотнее. Любой жидкости, но не воды. Вода и здесь представляет собой исключение. При охлаждении вода сначала ведет себя, как и другие жидкости: постепенно уплотняясь, она уменьшает свой объем. Такое явление можно наблюдать до +4°С (точнее до +3,98°С).

Именно при температуре +3,98°С вода имеет наибольшую плотность и наименьший объем. Дальнейшее охлаждение воды постепенно приводит уже не к уменьшению, а к увеличению объема. Плавность этого процесса вдруг прерывается и при 0°С происходит резкий скачок увеличения объема почти на 10%! В это мгновение вода превращается в лед.

Уникальная особенность поведения воды при охлаждении и образовании льда играет исключительно важную роль в природе и жизни. Именно эта особенность воды предохраняет от сплошного промерзания в зимний период все водоемы земли - реки, озера, моря и тем самым спасает жизнь.

В отличие от пресной воды морская вода при охлаждении ведет себя иначе. Замерзает она не при 0°С, а при минус 1,8-2,1°С - в зависимости от концентрации растворенных в ней солей. Имеет максимальную плотность не при + 4°С, а при -3,5°С. Таким образом она превращается в лед, не достигая наибольшей плотности. Если вертикальное перемешивание в пресных водоемах прекращается при охлаждении всей массы воды до +4°С, то в морской воде вертикальная циркуляция происходит даже при температуре ниже 0°С. Процесс обмена между верхними и нижними слоями идет непрерывно, создавая благоприятные условия для развития животных и растительных организмов.

Особенно благоприятной средой для обитателей морей и океанов являются талые воды, образующиеся при таянии ледников и айсбергов. В безбрежных просторах океанов плавающие горы-айсберги в основном скрыты под водой, однако могут представлять серьезную опасность для судоходства. Трагедией века была названа гибель "Титаника", которая произошла в результате столкновения суперлайнера с огромным айсбергом 14 апреля 1912 года.

Все термодинамические свойства воды заметно или резко отличаются от других веществ.

Наиболее важная из них - аномалия удельной теплоемкости. Аномально высокая теплоемкость воды делает моря и океаны гигантским регулятором температуры нашей планеты, в результате чего не происходит резкого перепада температур зимой и летом, днем и ночью. Континенты, расположенные вблизи морей и океанов, обладают мягким климатом, где перепады температуры в различные времена года бывают незначительными.

Мощные атмосферные потоки, содержащие огромное количество теплоты, поглощенное в процессе парообразования, гигантские океанические течения играют исключительную роль в создании погоды на нашей планете.

Аномалия теплоёмкости заключается в следующем: При нагревании любого вещества теплоемкость неизменно повышается. Да, любого вещества, но не воды. Вода - исключение, она и здесь не упускает возможности быть оригинальной: с повышением температуры изменение теплоемкости воды аномально; от 0 до 37°С она понижается и только от 37 до 100°С теплоемкость все время растет.

В пределах температур, близких к 37°С, теплоемкость воды минимальна. Именно эти температуры - область температур человеческого тела, область нашей жизни. Физика воды в области температур 35-41°С (пределы возможных, нормально протекающих физиологических процессов в организме человека) констатирует вероятность достиже-ния уникального состояния воды, когда массы квазикристаллической и объемной воды равны друг другу и способность одной структуры переходить в другую - вариабельность - максимальная. Это замечательное свойство воды предопределяет равную вероятность течения обратимых и необратимых биохимических реакций в организме человека и обеспечивает "легкое управление" ими.

Другим общеизвестна исключительная способность воды растворять любые вещества. И здесь вода демонстрирует необычные для жидкости аномалии, и в первую очередь аномалии диэлектрической постоянной воды. Это связано с тем, что ее диэлектрическая постоянная (или диэлектрическая проницаемость) очень велика и составляет 81, в то время как для других жидкостей она не превышает 10. В соответствии с законом Кулона сила взаимодействия двух заряженных частиц в воде будет в 81 раз меньше, чем, например, в воздухе, где эта характеристика равна единице. В этом случае прочность внутримолекуляр-ных связей уменьшается в 81 раз и под действием теплового движения молекулы диссоциируют с образованием ионов. Необходимо отметить, что из-за исключительной способности растворять другие вещества вода никогда не бывает идеально чистой.

Следует упомянуть еще об одном удивительной аномалии воды - исключительно высоком поверхностном натяжении. Из всех известных жидкостей только ртуть имеет более высокое поверхностное натяжение. Это свойство проявляется в том, что вода всегда стремится сократить свою поверхность.

Нескомпенсированные межмолекулярные силы наружного (поверхностного) слоя воды, вызванные квантовомеханическими причинами, создают внешнюю упругую пленку. Благодаря пленке многие предметы, будучи тяжелее воды, не погружаются в воду. Если, например, стальную иголку осторожно положить на поверхность воды, то иголка не тонет. А ведь удельный вес стали почти в восемь раз больше удельного веса воды. Всем известна форма капли воды. Высокое поверхностное натяжение позволяет воде иметь шарообразную форму при свободном падении.

Поверхностное натяжение и смачивание являются основой особого свойств воды и водных растворов, названного капиллярностью. Капиллярность имеет огромное значение для жизни растительного, животного мира, формирования структур природных минералов и плодородия земли. В каналах, которые во много раз уже человеческого волоса, вода приобретает удивительные свойства. Она становится более вязкой, уплотняется в 1,5 раза, а замерзает при минус 80-70°С.

Причиной сверханомальности капиллярной воды являются межмолекулярные взаимодействия, тайны которых еще далеко не раскрыты.

Ученым и специалистам известна так называемая поровая вода. В виде тончайшей пленки она устилает поверхность пор и микрополостей пород и минералов земной коры и других объектов живой и неживой природы.

Связанная межмолекулярными силами с поверхностью других тел, эта вода, как и капиллярная вода, обладает особой структурой.

Таким образом, аномальные и специфические свойства воды играют ключевую роль в ее многообразном взаимодействии с живой и неживой природой. Все эти необычные особенности свойств воды настолько "удачны" для всего живого, что делает воду незаменимой основой существования жизни на Земле.

ЛИТЕРАТУРА

1. Белая М.Л., Левадный В.Г. Молекулярная структура воды. М.: Знание 1987. - 46 с.

2. Бернал Дж. Д. Геометрия построек из молекул воды. Успехи химии, 1956, т. 25, с. 643-660.

3. Бульенков Н.А. О возможной роли гидратации как ведущего интеграционного фактора в организации биосистем на разных уровнях их иерархии. Биофизика, 1991, т.36, в.2, с.181-243.

4. Зацепина Т.Н. Свойства и структура воды. М.: изд-во МГУ, 1974, - 280 с.

5. Наберухин Ю.И. Структурные модели жидкости. М.: Наука. 1981 - 185 с.

7. Аномалии воды

Химически чистая вода обладает рядом свойств, резко отличающих ее от других природных тел и химических аналогов (гидридов элементов 6 группы периодической системы Менделеева) и от других жидкостей. Эти особые свойства известны под названием аномалии воды.

Исследуя воду и, особенно ее водные растворы, ученые раз за разом убеждались, что вода обладает ненормальными -- аномальными свойствами, присущими только ей, ее Величеству -- Воде, подарившей нам Жизнь и возможность мыслить. Мы даже и не подозреваем, что столь привычные и естественные свойства воды в природе, в различных технологиях, наконец, в обыденной жизни нашей являются уникальными и неповторимыми.

Плотность

Для всей биосферы исключительна важной особенностью воды является ее способность при замерзании увеличивать, а не уменьшать свой объем, т.е. уменьшать плотность. Действительно, при переходе любой жидкости в твердое состояние молекулы располагаются теснее, а само вещество, уменьшаясь в объеме, становится плотнее. Да, для любой из необозримо разных жидкостей, но не воды. Вода здесь представляет исключение. При охлаждении вода сначала ведет себя как и другие жидкости: постепенно уплотняясь, уменьшает свой объем. Такое явление можно наблюдать до +3,98°С. Затем, при дальнейшем снижении температуры до 0°С, вся вода замерзает и расширяется в объеме. В результате удельный вес льда становится меньше воды и лед плавает. Если бы лед не всплывал, а тонул, то все водоемы (реки, озера, моря) промерзли бы до дна, испарение бы резко сократилось, все пресноводные животные и растения погибли бы. Жизнь на Земле стала бы невозможной. Вода -- единственная жидкость на Земле, лед которой не тонет за счет того, что его объем на 1/11 больше объема воды.

Поверхностное натяжение

Благодаря тому, что круглые шарики воды очень упруги, идет дождь, выпадает роса. Что же это за удивительная сила, которая сохраняет капли росы, а поверхностный слой воды в любой лужице делает эластичным и относительно прочным?

Известно, что если стальную иголку осторожно положить на поверхность воды, налитой в блюдце, то иголка не тонет. А ведь удельная масса металла значительно больше, чем у воды. Молекулы воды связаны силой поверхностного натяжения, которая позволяет им подниматься вверх по капиллярам, преодолевая силу земного притяжения. Без этого свойства воды жизнь на Земле была бы также невозможна.

Теплоемкость

Ни одно вещество в мире не поглощает и не отдает среде столько тепла, сколько вода. Теплоемкость воды в 10 раз больше теплоемкости стали и в 30 раз больше ртути. Вода сохраняет тепло на Земле.

С поверхности морей, океанов, суши испаряется за год 520000 кубических километров воды, которые, конденсируясь, отдают много тепла холодным и полярным регионам.

Вода в организме человека составляет 70-90%. от веса тела. Не обладай вода такой теплоемкостью, как сейчас, обмен веществ в теплокровных и холоднокровных организмах был бы невозможен.

Легче всего вода нагревается и быстрее всего охлаждается в своеобразной "температурной яме", соответствующей +37°С, температуре человеческого тела.

Есть ещё несколько аномальных свойств воды:

Ни одна жидкость не поглощает газы с такой жадностью, как вода. Но она их также легко отдает. Дождь растворяет в себе все ядовитые газы атмосферы. Вода - ее мощный природный фильтр, очищающий атмосферу от всех вредных и ядовитых газов. Еще одно удивительное свойство воды проявляется при воздействии на нее магнитного поля. Вода, подвергнутая магнитной обработке, меняет растворимость солей и скорость химических реакций.

Но самое удивительное свойство воды - это свойство практически универсального растворителя. И если какие-то вещества в ней не растворяются, то и это для жизни сыграло громадную роль в эволюции: скорее всего именно гидрофобным свойствам первичных биологических мембран и обязана жизнь своим появлением и развитием в водной среде.

Вода известная и неизвестная. Память воды

Бромная вода -- насыщенный раствор Br2 в воде (3,5% по массе Br2). Бромовая вода -- окислитель, бромирующий агент в аналитической химии. Аммиачная вода -- образуется при контакте сырого коксового газа с водой...

Вода как реагент и как среда для химического процесса (аномальные свойства воды)

Роль воды в нынешней науке и технике очень велика. Вот только часть областей применения воды. 1. В сельском хозяйстве для полива растений и питания животных 2. В химической промышленности для получения кислот, оснований, органических веществ. 3...

Вода, дарующая жизнь

Вода представляет собой важнейшее химическое соединение, определяющее возможность существования жизни на Земле. Ежедневное потребление человеком питьевой воды составляет в среднем около 2 л...

Водород - топливо будущего

Следующей проблемой, где невесомость вновь заявила о себе, стала проблема отвода образующейся в топливном элементе воды. Если ее не удалять, она покроет электрод пленкой и затруднит к нему доступ для газа...

Информационно-структурная память воды

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра...

Определение жесткости воды комплексонометрическим методом

Ввиду широкой распространенности кальция, соли его почти всегда содержатся в природной воде. Из природных солей кальция только гипс несколько растворим в воде, однако, если вода содержит диоксид углерода...

Расчет и подбор выпарной установки

Gв определяют из теплового баланса конденсатора: Gв=W3(hбк-cвtк)/cв(tk-tн), где hбк - энтальпия паров в барометрическом конденсаторе; tн = 200С - начальная температура охлаждающей воды; Cв =4...

Расчет и проектирование двухкорпусной выпарной установки

Расход охлаждающей воды GВ определяют из теплового баланса конденсатора: , где IБК - энтальпия паров в барометрическом конденсаторе, Дж?кг; tн - начальная температура охлаждающей воды, 0С...

Сорбционная очистка воды

В производстве устанавливается в зависимости от требований технологического процесса. Вода, используемая в производстве...

Сорбционная очистка воды

Для предупреждения развития бактериальных биологических обрастаний в теплообменных аппаратах, а также в трубопроводах рекомендуется периодически 3-4 раза в сутки применять хлорирование воды, продолжительностью каждого периода 40-60 минут...

Сорбционная очистка воды

Одним из наиболее распространенных видов кондицирования воды является её умягчение. Первым промышленным способом устранения солей жесткости был содово-известковый...

Сульфат кальция, кристаллогидрат и безводная соль

Удивительное вещество - вода

Гидроломгия -- наука, изучающая природные воды, их взаимодействие с атмосферой и литосферой, а также явления и процессы, в них протекающие (испарение, замерзание и т. п.). Предметом изучения гидрологии являются все виды вод гидросферы в океанах...

Вода. Аномальные свойства воды и их причины

Покольку вода является универсальным растворителœем, рассмотрим свойства воды. Самое распространенное вещество на земле - ϶ᴛᴏ вода. Почти 3\4 поверхности земного шара покрыта водой. Она является средой в которой протекают химические процессы в живых организмах и сама же принимает участие в биохимических процессах.

Вода главный катализатор всœех жизненных процессов. Наш организм на 65-75% состоит из воды. Суточная потребность человека в воде составляет от 2 до 6 л и зависимость от нее намного сильнее чем от пищи. Многие пищевые продукты (овощи, фрукты, молоко, мясо) на 95-65% состоят из воды. Человечество широко использует для своих нужд природную воду. Основная часть воды приходится на Мировой океан. Запасы пресной воды, доступной для использования, составляют 0,15% объема гидросферы.

Физические свойства. Это жидкость без цвета и запаха. Рассмотрим особенности физико- химических свойств (аномалии ) воды.

1. У воды аномально высокая полярность как растворителя.

µ = 1,84·10 -29 Клм (у Н 2 S - µ = 0,93·10 -29 Клм).

2. Вода имеет аномально высокую теплоемкость с = 75,3 Дж/моль К, у спирта в 1.5 раза больше, в связи с этим в ночное время и при переходе от лета к зиме она остывает медленно, а при обратном переходе нагревается медленно, т.о. регулируя температуру на земном шаре. При нагревании любого вещества кроме воды от 0 до 37 о С теплоемкость увеличивается, а у воды уменьшается, далее увеличивается. Именно при 37 о С организм затрачивает меньше энергии для поддержания температуры тела.

3. Аномально высокие температура Тпл = 0 о С и температура Ткип = 100 о С по сравнению с аналогами.

4. При 0 о С вода замерзает. Плотность льда меньше чем у воды. При этом объем льда увеличивается на 9% .У других веществ уменьшается.

5. Плотность воды при переходе из твердого состояния в жидкое не уменьшается, а увеличивается. При нагревании воды от 0 до 4 о С ее плотность также увеличивается. Плотность воды достигает максимального значения при 4 о С - ρ = 0,998г/см 3 .

Аномалии связаны со строением молекулы воды и образованием водородной связи между ними.

Молекула воды имеет угловое строение. Атом кислорода в молекуле воды находится в состоянии sp 3 - гибридизации. По этой причине валентный угол близок к тетраэдрическому (109 о 28 ").

Образование водородной связи приводит к ассоциации молекул. Каждый атом кислорода принимает участие в образовании двух водородных связей. Молекулы при кристаллизации образуют слои, причем каждая связана с тремя молекулами в этом слое и с одной из сосœеднего. Это приводит к образованию пустот.

При плавлении льда разрушается лишь часть водородных связей и объем воды уменьшается. При 0 о С вода содержит остатки структуры льда. От 0 до 4 о С плотность воды увеличивается за счет разрушения льда.

Высокая теплоемкость воды объясняется затратой тепла на разрыв водородных связей.

Химические свойства . Молекула Н 2 O устойчива к нагреванию. При температуре выше 1000 о С она подвергается термической диссоциации, ᴛ.ᴇ. разложению

Н 2 O ↔ 2 Н 2 + О 2

Этот процесс протекает с поглощением тепла.

Вода очень реакционноспособное вещество. Оксиды многих металлов и неметаллов соединяются с Н 2 O образуя:

СаО + Н 2 O = Са(ОН) 2

SО 3 + Н 2 O = Н 2 SО 4

Активные металлы реагируют с водой с выделœением Н 2.

Вода образует соединœения с веществами не обладающими химической активностью (гидрат ксенона – Хе 6 Н 2 O). Хе заполняет межмолекулярное пространство в структуре Н 2 O, образуя соединœения, которые называются клатратами .

Одно из объяснений аномалии плотности воды заключается в том, что ей приписывается тенденция к ассоциации ее молекул, которые образуют различные группы [ Н2О, (Н2О) 2, (Н2О) 3 ], удельный объем которых

различен при разных температурах различны и концентрации этих групп, следовательно, различен и их общий удельный объем.

Первое из них означает, что аномалии плотности, возникающие благодаря движению, не создают потока теплачерез нижнюю гращу. На верхней границе плотность задается, а на берегу (х 0) нормальная компонента горизонтального потока тепла считается равной нулю. Скорости и и и на берегу должны обращаться в нуль в силу условий непротекания и прилипания. Приближение гидростатики, однако так сильно упрощает динамику, что условие прилипания для и; не может быть выполнено.

Для третичных и вторичных спиртов характерна аномалия плотности паров при высоких температурах (определение по В. Третичные спирты (до Cj2) дают при температуре кипения нафталина (218е) лишь половинное значение молекулярного веса, вследствие их разложения на воду и алкилены; вторичные спирты (до С9) проявляют такую же аномалию, но.

Положительный знак работы приходится относить за счет аномалии плотности воды.

Если, как утверждает Гребе а, работы Сент-Клер Девиля способствовали, с одной стороны, объяснению замеченных аномалий плотностей паров и тем самым, хотя и косвенно, подтверждали теорию Авогадро, то, с другой

стороны, эти работы послужили стимулом для изучения химического сродства, поскольку способствовали выяснению природы определенных реакций.

Для воды уравнение (64) дает правильные результаты до температуры 4, так как она, как известно, имеет аномалию плотности. При 4 плотность воды наибольшая, ниже 4 наблюдается сложное распределение плотности, не учитываемое этим уравнением.

В силу (8.3.56) параметр X является мерой отношения (L / LH) 2 и неравенство (8.3.19 а) означает просто, что аномалии плотности, создаваемые даижением, перемешиваются на масштабе, малом по сравнению с L.

При наличии основной стратификации положительный ротор касательного напряжения ветра и связанное с ним вертикальное движение во внутренней области создают во всей этой области положительную аномалию плотности, к которой добавляется аномалия плотности из-за притока тепла на поверхности.

Если связи внутри полиэдров много сильнее, чем между полиэдрами, то только эти последние будут разупорядочены в расплаве, так что в расплаве будут существовать единицы в виде полиэдров. Некоторые аномалии плотности в жидких сплавах А1 - Fe, видимо, поддерживают эту гипотезу.

Формулировка задачи на устойчивость такого основного состояния будет дана для случая зонального течения в атмосфере. Случай океана может рассматриваться как частный случай задачи для атмосферы во всем, что касается формулировки проблемы и получается простой заменой стандартного профиля плотности ps (z) постоянным значением плотности и заменой аномалии атмосферной потенциальной температуры в аномалией океанской плотности, взятой со знаком минус.

Повышение давления смещает максимальную плотность воды в сторону более низких температур. Так, при 50 атм максимальная плотность наблюдается около О С. Выше 2000 атм аномалия плотности воды исчезает.

Таким образом, в широком интервале температур наиболее энергетически устойчивое соединение водорода и кислорода - вода. Она образует на Земле океаны, моря, льды, пары и туман, в большом количестве содержится в атмосфере, в толщах пород вода представлена капиллярной и кристаллогидратной формами. Такая распространенность и необычность свойств (аномалия плотности воды и льда, полярность молекул, способность к электролитической диссоциации, к образованию гидратов, растворов и др.)

делают воду активным химическим агентом, по отношению к которому обычно рассматривают свойства большого числа других соединений.

Жидкости, как правило, заметно расширяются при нагревании. У некоторых веществ (например, у воды) имеет место характерная аномалия в значениях изобарного коэффициента расширения. При более высоких давлениях максимум плотности (минимум удельного объема) сдвигается в сторону меньших температур, а при давлениях выше 23 МПа аномалия плотности у воды исчезает.

Эта оценка обнадеживает, поскольку величина Ба находится в неплохом соответствии с наблюдаемой глубиной термоклина, которая изменяется от 800 м в средних широтах до 200 м в тропической и полярной зонах. Так как глубина 50 значительно меньше глубины океана, представляется разумным рассматривать термоклин как пограничный слой; в соответствии с этим при постановке граничного условия на нижней границе можно считать, что температура на глубинах, больших БО, асимптотически стремится к некоторому горизонтально однородному распределению. Поскольку масштаб г уже равен D, удобно перенести начало координат на поверхность и измерять г от поверхности океана. Таким образом, при z - - аномалия плотности должна затухать, а идолжна стремиться к неизвестному пока асимптотическому значению, точно так же как вертикальная скорость, создаваемая на нижней границе экмановского слоя, не может быть задана априори.

Постоянные УП должны определяться из условий на граище. В гидростатическом слое вследствие больших градиентов плотности, создаваемых вертикальным движением (Ла S / Е) ус намного превосходит vj по величине. Вместе с тем v должно удовлетворять условию прилипания при f х О. Vn равны нулю и, следовательно, сам. Указанная трудность разрешается, если вспомнить, что во внутренней области вертикальное перемешивание плотности уравновешивает эффект вертикального движения, а в гидростат тическом слое аномалия плотности, создаваемая вертикальным движением, балансируется только эффектом горизонтального перемешивания. Таким образом, должна существовать промежуточная область между внутренней областью и гидростатическим слоем, в которой вертикальная и горизонтальная диффузии одинаково важны. Как показывает (8.3.20), эта область имеет горизонтальный масштаб Lff, так что рассчитанное с этим масштабом А равно единице.

Как известно, вода, при нагревании от нулевой температуры, сжимается, достигая наименьшего объема и, соответственно, наибольшей плотности при температуре 4 С. Исследователи из Техасского университета предложили объяснение, в котором учитывается не только взаимодействие ближайших молекул воды, но и более удаленных. Во всех 10-ти известных формах льда и в воде взаимодействие ближайших молекул происходит одинаковым образом. Иначе обстоит дело со взаимодействием более удаленных молекул. В жидкой фазе, в том интервале температур, где имеется аномалия плотности, более устойчивым является состояние с большей плотностью. Кривая зависимости плотности от температуры, которую ученые рассчитали, похожа на ту, что наблюдается для воды.

Чистая вода прозрачна и бесцветна. Она не имеет ни запаха, ни вкуса. Вкус и запах воде придают растворенные в ней примесные вещества. Многие физические свойства и характер их изменения у чистой воды аномальны. Это относится к температурам плавления и кипения, энтальпиям и энтропиям этих процессов. Аномален и температурный ход изменения плотности воды. Вода имеет максимальную плотность при 4 С. Выше и ниже этой температуры плотность воды уменьшается. При отвердевании происходит дальнейшее резкое уменьшение плотности, поэтому объем льда на 10 % больше равного по массе объема воды при той же температуре. Все указанные аномалии объясняются структурными изменениями воды, связанными с возникновением и разрушением межмолекулярных водородных связей при изменении температуры и фазовых переходах. Аномалия плотности воды имеет огромное значение для жизни живых существ, населяющих замерзающие водоемы. Поверхностные слои воды при температуре ниже 4 С не опускаются на дно, поскольку при охлаждении они становятся более легкими. Поэтому верхние слои воды могут затвердевать, в то время как в глубинах водоемов сохраняется температура 4 С. В этих условиях жизнь продолжается.