Баланс калия и натрия в организме человека: чем он обеспечивается и что важно знать о калиево-натриевом насосе? Натриево-калиевый насос или помпа Калий натриевый насос механизм.

Он встречается практически во всех клетках человека, а также в клетках других организмов. Основное назначение - поддерживать клеточный потенциал и регулировать клеточный объём.

Принцип действия

Схема действия

Первоначально этот переносчик, осуществляющий антипорт , присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны. Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион PO 4 3- (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а PO 4 3- замещается на два иона К + . Затем конформация переносчика изменяется на первоначальную, и ионы К + оказываются на внутренней стороне мембраны. Здесь ионы К + отщепляются, и переносчик вновь готов к работе.

Более кратко действия АТФазы можно описать так:

  • 1) Она изнутри клетки «забирает» три иона Na + ,затем расщепляет молекулу АТФ и присоединяет к себе фосфат
  • 2) «Выбрасывает» ионы Na + и присоединяет два иона K + из внешней среды.
  • 3) Отсоединяет фосфат, два иона K + выбрасывает внутрь клетки

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки - высокая концентрация K + . Работа Na + ,K + - АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней - отрицательный.

История

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Натрий-калиевый насос" в других словарях:

    Натрий -калиевый насос - – перемещение ионов натрия и калия через мембрану в цитоплазму и из нее; ионов натрия в 8 10 раз больше во внеклеточной жидкости, чем в клетке, ионов К больше в клетке, чем снаружи мембраны … Словарь терминов по физиологии сельскохозяйственных животных

    11 Неон ← Натрий → Магний … Википедия

    Натрий/Natrium (Na) Атомный номер 11 Внешний вид простого вещества серебристо белый мягкий металл Свойства атома Атомная масса (молярная масса) 22,989768 а. е. м. (… Википедия

    Мембранный транспорт транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов простой диффузии, облегченной диффузии и активного транспорта. Важнейшее свойство биологической… … Википедия

    К третьему периоду периодической системы относятся элементы третьей строки (или третьего периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов … Википедия

    ИОННЫЕ КАНАЛЫ, крупные белковые молекулы и надмолекулярные структуры липопротеидной природы, встроенные в мембраны клетки и ее органоидов (см. Биологические мембраны (см. БИОЛОГИЧЕСКИЕ МЕМБРАНЫ)). Обеспечивают избирательное прохождение ионов… … Энциклопедический словарь

    НАТРИЯ ХЛОРИД - Natrii chloridum. Синонимы: хлористый натрий, поваренная соль. Свойства. Белые кубические кристаллы или белый кристаллический порошок, без запаха, соленого вкуса, растворим в трех частях воды (растворимость при 20°С 36,0; при 100°С 39,1), слабо … Отечественные ветеринарные препараты

    Метод локальной фиксации потенциала, patch clamp (англ. patch фрагмент, clamp здесь фиксация) электрофизиологическая методика для изучения свойств ионных каналов, состоящая в том, что фрагмент клеточной мембраны изолируется … Википедия

    Метод локальной фиксации потенциала, patch clamp (англ. patch фрагмент, clamp здесь фиксация) электрофизиологическая методика для изучения свойств ионных каналов, состоящая в том, что фрагмент клеточной мембраны изолируется с помощью… … Википедия








Активный транспорт - это сопряженный с потреблением энергии перенос молекул или ионов через мембрану против градиента концентрации. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении. Движение это обычно однонаправленное, тогда как диффузия обратима. Источником энергии для активного транспорта служит АТФ - соединение, образующееся в процессе дыхания и выполняющее в клетке роль носителя энергии. Поэтому в отсутствие дыхания активный транспорт идти не может.

Во внеклеточных и внутриклеточных жидкостях преобладают ионы натрия (Na=), ионы калия (К+) и хлорид-ионы (Сl-). На рисунке видно, что концентрации этих ионов внутри эритроцитов и в плазме крови человека весьма различны. Внутри эритроцитов, как и в большинстве клеток, концентрация калия значительно выше, чем снаружи. Другая характерная особенность заключается в том, что внутриклеточная концентрация калия превышает концентрацию натрия.

Если каким-либо специфическим воздействием, например с помощью цианида, подавить дыхание эритроцитов, то их ионный состав начнет постепенно меняться и в конце концов сравняется с ионным составом плазмы крови. Это показывает, что данные ионы могут пассивно диффундировать через плазматическую мембрану эритроцитов, но что в норме за счет энергии, поставляемой процессом дыхания, идет их активный транспорт, благодаря которому и поддерживаются концентрации, указанные на рисунке. Иными словами, натрий активно выкачивается из клетки, а калий активно накачивается в нее.

Натрий-калиевый насос

Активный транспорт осуществляется при помощи белков-переносчиков, локализующихся в плазматической мембране. Этим белкам в отличие от тех, о которых мы говорили при обсуждении облегченной диффузии, для изменения их конформации требуется энергия. Поставляет эту энергию АТФ, образующийся в процессе дыхания.

Сравнительно недавно выяснилось, что у большей части клеток в плазматической мембране действует натриевый насос , активно выкачивающий натрий из клетки. В животных клетках натриевый насос сопряжен с калиевым насосом, активно поглошаюшим ионы калия из внешней среды и переносящим их в клетку. Такой объединенный насос называют натрий-калиевым насосом |(Na+, К+)-насос|. Поскольку насос имеется почти во всех животных клетках и выполняет в них ряд важных функций, он представляет собой хороший пример механизма активного транспорта. О его физиологическом значении свидетельствует тот факт, что более трети АТФ, потребляемого животной клеткой в состоянии покоя, расходуется на перекачивание натрия и калия.

Насос - это особый белок-переносчик, локализующийся в мембране таким образом, что он пронизывает всю ее толщу. С внутренней стороны мембраны к нему поступают натрий и АТФ, а с наружной - калий. Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает этот белок. Обратите внимание, что на каждые два поглощенных иона калия из клетки выводится три иона натрия. Вследствие этого содержимое клетки становится более отрицательным по отношению к внешней среде, и между двумя сторонами мембран возникает разность потенциалов. Это ограничивает поступление в клетку отрицательно заряженных ионов (анионов), например хлорид-ионов. Именно данным обстоятельством объясняется тот факт, что концентрация хлорид-ионов в эритроцитах ниже, чем в плазме крови (рис. 5.20), хотя эти ионы могут поступать в клетки и выходить из них за счет облегченной диффузии. Положительно заряженные ионы (катионы), напротив, притягиваются клеткой. Таким образом, оба фактора - концентрация и электрический заряд - важны при определении того, в каком направлении будут перемешаться через мембрану ионы.

Натрий-калиевый насос необходим животным клеткам для поддержания осмотического баланса (осморегуляции). Если он перестанет работать, клетка начнет набухать и в конце концов лопнет. Произойдет это потому, что с накоплением ионов натрия в клетку под действием осмотических сил будет поступать все больше и больше воды. Ясно, что бактериям, грибам и растениям с их жесткими клеточными стенками такой насос не требуется. Животным клеткам он нужен также для поддержания электрической активности в нервных и мышечных клетках и, наконец, для активного транспорта некоторых веществ, например Сахаров и аминокислот. Высокие концентрации калия требуются также для белкового синтеза, гликолиза, фотосинтеза и для некоторых других жизненно важных процессов.

Активный транспорт осуществляется всеми клетками, но в некоторых случаях он играет особо важную роль. Именно так обстоит дело в клетках эпителия, выстилающего кишечник и почечные канальцы, поскольку функции этих клеток связаны с секрецией и всасыванием.

Формирование потенциала покоя

Соотношение химической и электрической силы

Поведение ионов калия и натрия

Ионы калия и натрия по-разному перемещаются через мембрану:

1) Через ионные насосы-обменники калий затаскивается в клетку, а натрий выводится из клетки.

2) Через постоянно открытые калиевые каналы калий выходит из клетки, но может и возвращаться в неё обратно через них же.

3) Натрий "хочет" войти в клетку, но "не может", т.к. каналы для него закрыты.

По отношению к ионам калия между химической и электрической силой устанавливается равновесие на уровне - 70 мВ.

1) Химическая сила выталкивает калий из клетки, но стремится затянуть в неё натрий.

2) Электрическая сила стремится затянуть в клетку положительно заряженные ионы (как натрий, так и калий).

Попробую рассказать коротко, откуда берётся мембранный потенциал покоя в нервных клетках - нейронах. Ведь, как всем теперь известно, наши клетки только снаружи положительные, а внутри они весьма отрицательные, и в них существует избыток отрицательных частиц - анионов и недостаток положительных частиц - катионов.

И вот тут исследователя и студента поджидает одна из логических ловушек: внутренняя электроотрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а наоборот - из-за потери некоторого количества положительных частиц (катионов).

И поэтому сущность нашего рассказа будет заключаться не в том, что мы объясним, откуда берутся отрицательные частицы в клетке, а в том, что мы объясним, каким образом в нейронах получается дефицит положительно заряженных ионов - катионов.

Куда же деваются из клетки положительно заряженные частицы? Напомню, что это ионы натрия - Na + и калия - K + .

А всё дело заключается в том, что в мембране нервной клетки постоянно работают насосы-обменники , образованные специальными белками, встроенными в мембрану. Что они делают? Они меняют "собственный" натрий клетки на наружный "чужой" калий. Из-за этого в клетке оказывается в конце концов недостаток натрия, который ушёл на обмен. И в то же время клетка переполняется ионами калия, который в неё натащили эти молекулярные насосы.

Чтобы легче было запомнить, образно можно сказать так: "Клетка любит калий! " (Хотя об истинной любви здесь не может идти и речи!) Поэтому она и затаскивает калий в себя, несмотря на то, что его и так полно. Поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. Поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. Вот что делает любовь, пусть даже не настоящая!



Кстати, интересно, что клетка не рождается с потенциалом покоя в готовом виде. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от -10 до -70 mV, т.е. их мембрана становится более электроотрицательной, она поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках (ММСК) костного мозга человека искусственная деполяризация ингибировала дифференцировку клеток (Fischer-Lougheed J., Liu J.H., Espinos E. et al. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology 2001; 153: 677-85; Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. Journal of Physiology 1998; 510: 467-76; Sundelacruz S., Levin M., Kaplan D.L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. Plos One 2008; 3).

Образно говоря, можно выразиться так:

Создавая потенциал покоя, клетка "заряжается любовью".

Это любовь к двум вещам:

1) любовь клетки к калию,

2) любовь калия к свободе.

Как ни странно, но результат этих двух видов любви - пустота!

Именно она, пустота, создаёт в клетке отрицательный электрический заряд - потенциал покоя. Точнее, отрицательный потенциал создают пустые места, оставшиеся от убежавшего из клетки калия.

Итак, результат деятельности мембранных ионных насосов-обменников таков:

Натрий-калиевый ионный насос-обменник создаёт три потенциала (возможности):

1. Электрический потенциал - возможность затягивать внутрь клетки положительно заряженные частицы (ионы).

2. Ионный натриевый потенциал - возможность затягивать внутрь клетки ионы натрия (и именно натрия, а не какие-нибудь другие).

3. Ионный калиевый потенциал - возможновть выталкивать из клетки ионы калия (и именно калия, а не какие-нибудь другие).

1. Дефицит натрия (Na +) в клетке.

2. Избыток калия (K +) в клетке.

Можно сказать так: ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Именно из-за получившегося дефицита натрия в клетку теперь "полезет" этот самый натрий снаружи. Так всегда ведут себя вещества: они стремятся выравнять свою концентрацию во всём объёме раствора.

И в то же время в клетке получился избыток ионов калия по сравнению с наружной средой. Потому что насосы мембраны накачали его в клетку. И он стремится уравнять свою концентрацию внутри и снаружи, и поэтому стремится выйти из клетки.

Тут ещё важно понять, что ионы натрия и калия как бы "не замечают" друг друга, они реагируют только "на самих себя". Т.е. натрий реагирует на концентрацию натрия же, но "не обращает внимания" на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и "не замечает" натрий. Получается, что для понимания поведения ионов в клетке надо по-отдельности сравнивать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию калия внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это часто делается в учебниках.

По закону выравнивания концентраций, который действует в растворах, натрий "хочет" снаружи войти в клетку. Но не может, так как мембрана в обычном состоянии плохо его пропускает. Его заходит немножко и клетка его опять тут же обменивает на наружный калий. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Так вот он и выходит наружу через особые белковые дырочки в мембране (ионные каналы).

В организме много разных микроэлементов, но наличие двух из них, калия (К) и натрия (Na), обеспечивает самое важное – нормальную работу клетки, а именно – поставку в нее «кирпичиков» для строительства и вывоза «мусора» после строительства. Причем они работают одновременно, перемещаясь навстречу друг другу и составляя некую систему – постоянно действующую помпу – калиево-натриевый насос. Работа этого насоса происходит благодаря наличию особого белка, который расположен в мембране клетки, пронизывая всю ее толщину. Называется такой белок «натрий-калиевая АТФ-аза».

Зачем нужен такой насос? Его функция – постоянно накачивать ионы К внутрь клетки, одновременно выкачивать из нее ионы Na в межклеточное пространство.

Важно понимать, что при этом перемещение обоих ионов происходит против градиентов их концентраций. И осуществление таких неестественных функций возможно благодаря двум важнейшим свойствам внутримембранного белка:

1) он умеет «добывать» энергию, расщепляя АТФ (уникальный источник энергии в организме);
2) специализируется именно на связывании Na и K.

Значение калиево-натриевого насоса для жизни каждой клетки и организма в целом определяется тем, что непрерывное откачивание из клетки Na и нагнетание в нее K необходимо для осуществления многих жизненно важных процессов:

* осморегуляции и сохранения клеточного объема;
* поддержания разности потенциалов по обе стороны мембраны;
* поддержания электрической активности в нервных и мышечных клетках;
* активного транспорта через мембраны других веществ (сахаров, аминокислот);
* синтеза белка в клетке, обмена углеводов, осуществления фотосинтеза и других процессов по обеспечению жизни клетки.

Необходимо понимать, что работа насоса настолько важна, что примерно треть всей энергии, которую расходует клетка организма в состоянии покоя, затрачивается именно на поддержание работы калиево-натриевого насоса.

Таким образом, каждая клетка организма «дышит» вместе с взаимонаправленным движением К и Na, и если каким-либо внешним воздействием подавить это дыхание, то ионный состав внутреннего содержимого клетки начнет постепенно меняться – произойдет накопление натрия внутри клетки, и вымывание калия из клетки приведут к равновесию с ионным составом среды, окружающей клетку, после чего клетка погибает.

Именно поэтому важно рассматривать Na и К не как отдельные ионы, а в совокупности и неразрывности. Это два химических элемента-антипода, между которыми идет постоянная «борьба», и каждый из них тянет «одеяло на себя».

ВАЖНО!!! Na связывает воду, а K пытается вывести ее из клетки. Вот это движение «в клетку и из клетки» позволяет жидкости циркулировать из межклеточного пространства в клетку и обратно. А вместе с ней циркулируют и питательные вещества – внутрь, а из клетки – продукты жизнедеятельности клетки, создавая систему микронасосиков, которые в совокупности образуют единый насос и называются «калиево-натриевым насосом».

Но работать калиево-натриевый насос будет при условии определенного соотношения K и Na в организме.

Важно отметить, что тенденции последнего времени – избыток Na в человеческом организме, и в этом случае под угрозой находится благосостояние всего организма, в особенности сердечно-сосудистая система, работа мозга и работа мышц. Также нарушение баланса приводит к изменениям процессов белкового обмена, обмена жиров, углеводов, минералов и витаминов во всех органах и системах организма.

Так устроен наш организм, что он склонен удерживать Na (посредством ренин-ангиотезин-альдостероновой системы) и расходовать K. Именно поэтому организму проще пережить нехватку Na, чем его избыток. В случае понижения уровня Na в организме надпочечники (а точнее – кора надпочечников) начинают вырабатывать гормон альдостерон, под действием которого почки начинают снова поглощать доступный Na. И все восстанавливается.

К же постоянно выводится из организма с мочой, особенно в условиях стресса, при активных физических нагрузках и умственной работе.

Как это объяснить? Одна из теорий – у древних людей был неограниченный доступ к растительной пище, содержащей калий, и не было доступа к привычной нам поваренной соли. Именно поэтому избыток К выводится, а Na организм запасает с учетом эволюционной памяти.

В современных же условиях дела обстоят с точностью наоборот – поваренная соль (NaCl) используется в неограниченном количестве – ее мы добавляем в любое блюдо, употребляем в виде различных добавок, а количество сырых овощей и фруктов, содержащих K, в рационе современного человека значительно уменьшилось. Постоянные стрессовые ситуации только усугубляют проблему, поскольку способствуют выведению K и накоплению Na. Обладая мочегонным эффектом, K способствует выведению солевых излишков, которые не идут организму на пользу, Na же помогает накоплению продуктов метаболизма и задержке воды.

ВАЖНО!!! Одно из проявлений гипернатриемии в организме – повышение уровня артериального давления (АД) – относится к последствиям нарушения баланса K и Na в сторону последнего.

Также нужно принимать к сведению, что постоянно существующий избыток Na при недостатке K в организме коррелирует с повышением риска многих заболеваний, поскольку нарушается нормальная и сбалансированная работа любой клетки организма.

Калий: для чего нужен и как определить его дефицит?

К способствует нормальной работе органов и систем организма, поскольку помогает выведению из клеток продуктов их жизнедеятельности. При нехватке K страдает весь организм, но в первую очередь – нервная и мышечная системы. Человеку становится трудно передвигаться, начинаются перебои в работе сердечной мышцы.

Уровень ниже 3,5 ммоль/л – это гипокалиемия. При этом состоянии наблюдаются следующие симптомы:

Повышенная утомляемость;
сильные судороги в ногах;
мышечная слабость;
затруднения дыхания;
нарушения сердечного ритма;
запоры;
тошнота;
отечность лица и нижних конечностей;
редкое мочеиспускание.

Как восстановить баланс K и Na в организме?

Лучшим способом поднять уровень калия и восстановить работу калиево-натриевого насоса в организме является употребление свежих продуктов растительного происхождения.

ВАЖНО!!! Чем интенсивнее нагрузки физического и умственного характера, тем больше человек должен употреблять K и меньше Na.

Основным способом поддерживать здоровое соотношение указанных элементов является питание. Источники K для организма приведены в таблице.

Суточная норма потребления K

Суточной нормой K для здорового взрослого человека считается около 2–3 граммов, а малышам нужно (в зависимости от возраста и массы тела) 16–30 мг этого вещества на каждый килограмм веса .
Естественно, что при активных умственных и физических нагрузках, беременности, а также несбалансированном рационе питания необходимость в калии существенно повышается. При этом стоит отметить, что хоть и небольшой, но все-таки недостаток K человек испытывает весной и, как правило, дефицит редко наблюдается осенью.

Суточная норма K, оптимальная для каждого конкретного человека, также зависит и от содержания в организме Na. Это связано с тем, что нормальный обмен веществ представляется возможным только в том случае, если между Na и K поддерживается соотношение 2/3 к 1.

Суточная норма Na

Для того чтобы человеческий организм нормально рос и развивался, нужно употреблять минимальную суточную норму Na каждый день. Получить суточную норму натрия 1–2 грамма можно благодаря поваренной или морской соли. Важно учитывать, что такие продукты, а также соевый соус, рассолы, квашеная капуста, мясной бульон и консервированное мясо тоже содержат наибольшее количество Na. Поэтому не нужно спешить подсаливать пищу.

Норма в крови взрослого человека – 123–140 ммоль/л.

Гипонатриемия (снижение уровня натрия менее 123 ммоль/л) случается довольно редко. Кроме того, важно помнить, что в организме человека, а именно в почках, заложен механизм сохранения натрия, поэтому дефицит может проявляться исключительно в жаркую погоду, когда натрий будет выводиться вместе с потом, при потреблении одновременно слишком большого количества жидкости, рвоте и диарее или полном исключении попадания натрия в организм.

Выводы

1. Наш организм устроен таким образом, что К и Na работают во взаимодействии и образуют калиево-натриевый насос.

2. Эволюционно человек настроен на потерю K и сохранение Na.

3. Поэтому важно, чтобы в организм постоянно поступало в 2–3 раза больше K, чем Na.

Хлорид натрия совершенно необходим организму. Согласно исследованиям академика Покровского оптимальная доза поваренной соли 10-15 грамм в сутки. Значение поваренной соли рассмотрим на клеточном уровне. Стенки клеток является полупроницаемой мембраной, разделяющей растворы разных концентраций: содержимое клетки и межклеточное вещество. Мембраны - это сложные биологические структуры, состоящие из белков и жироподобных веществ. Они пропускают в клетку питательные вещества и выводят наружу отходы жизнедеятельности.

Мембраны находятся в постоянном движении, пульсируя и обновляясь. Процесс обмена между клеткой и межклеточным веществом основан на явлении осмоса. Мембрана выравнивает концентрацию веществ по обе стороны. А так как частицы растворенного вещества могут являться ионами, то они несут на себе еще и электрические заряды. В связи с этим диффузия через мембрану зависит не только от разности концентраций, но и от разницы потенциалов. Ионы хлора Cl-- легче проходят в менее концентрированный раствор, и их присутствие создает отрицательный заряд. Ионы натрия диффундируют слабее, т.к. имеют толстую гидратную оболочку и они создают в местах скопления положительный заряд. Так возникает разность потенциалов.

Вот зачем мы солим пищу, чтобы снабдить организм положительными и отрицательными ионами. Ионы хлора необходимы для образования соляной кислоты, которая входит в состав желудочного сока и участвует в процессе пищеварения. Однако, эти процессы сложнее и содержат в себе загадки, разгадать которые непросто.

В живых организмах значительно содержание ионов калия K + на элемент калий приходится в организме человека 140 грамм, а на долю натрия 100г. ионы калия K + и натрия Na + занимают свои места внутри организма. Внутри клеток ионов калия значительно больше (например в эритроцитах крови калия больше натрия в 15 раз, а в плазме крови их в 20 раз меньше) поэтому кровь соленая. Ионы натрия, имея толстую гидратную оболочку, труднее проходят через клеточную мембрану. Различное содержание K + и Na + в клетке и в межклеточном пространстве и создает разность потенциалов, способствует передвижению заряженных частиц через клеточные мембраны. Возникает так называемый калий - натриевый насос, который способствует переносу ионов. Энергию для этого процесса дает аденозинтрифосфорная кислота (сокращенно АТФ). Процесс перехода различных веществ через клеточные мембраны очень быстрый и процесс осмоса разность потенциалов не могут обеспечить такой скорости.

Обнаружено, что существуют вещества, способные переправлять ионы через клеточные мембраны. Первое такое вещество было открыто в 1955 году немецкими исследователями Брокманном и Шмидт-Кастнером, а 1964 году американский ученый Прессман установил, что это вещество обладает способностью образовывать комплексы с ионами щелочных металлов и увеличивает их способность к переходу через мембраны. Переносчики щелочных металлов получили название ионофоров. Первых ионофор, о чем писалось выше, был валиномицин. Далее были получены другие ионофоры. Они имеют белковую структуру. Имеют высокую биологическую структуру. Благодаря им, процесс прохождения через клеточную мембрану ионов и молекул протекает очень быстро.

За исследовательскую работу в области ионного транспорта через мембраны наши ученые Ю. А.Овчинников и В. Т. Иванов в 1978 году были удостоены Ленинской премии. Также эти вещества применяются в качестве лекарственных средств. Например. Валиномицин, грамицидин, антаманид.

Натрий калиевый насос лежит в основе передачи нервного импульса. Передача нервного раздражения происходит благодаря нервным клеткам - нейронам. Длинный отросток нервной клетки называется аксоном и служит проводником сигналов для органа, с которым он соединяется. Аксон напоминает трубу, в которой находится жидкость, и сам он погружен в жидкость. Обе эти жидкости содержат в себе растворенные соли и поэтому хорошо проводят электрический ток.

В жидкости, омывающей аксон, содержатся ионы Na + и Cl--. В жидкости внутри аксона - катионы K + и анионы органического происхождения. Эта конструкция проводника уступает металлическому, но для живых организмов он вполне достаточен. Нервная клетка находится в состоянии покоя, внутри её наблюдается отрицательный заряд - потенциал покоя. Как только нервная клетка получает сигнал возбуждения, резко возрастает проводимость мембраны для калия и натрия. Потенциал клетки падает до 0, а затем возрастает до положительной величины +50мВ. Перемена потенциала связана с тем, что ионы натрия проникают в клетку, а ионы калия выходят наружу. Изменение их концентраций и вызывает изменение потенциала. В этом заключен смысл передачи нервного импульса. Эти импульсы управляют нашими действиями.

Большое значение Na + и K + имеют в деятельности мозга. Наша память бывает двух видов: долговременная и кратковременная. Согласно существующей в настоящее время гипотезе механизм кратковременной памяти имеет ионную природу. Ионные связи непрочны, могут быстро разрушаться - поэтому-то и память коротка. В этих связях главное место отводится соединениям калия и натрия.

Длительная память связывается с образованием более прочных структур.